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Abstract
The Space Interferometry Mission (see http://sim.jpl.nasa.gov) requires
displacement metrology gauges with linearity ∼10 pm rms over a distance
of several metres. Displacement measuring interferometers are under
development to meet these requirements, while also meeting thermal
stability, robustness, size and geometry requirements. A persistent difficulty
in attaining picometre-class performance with laser interferometric
metrology gauges is the problem of ‘cyclic error’ which may be caused by
small amounts of mixing of the interferometer measurement and reference
signals. The mixing is caused by crosstalk, both optical and electronic.
Other causes of cyclic error have been also found and will be discussed.

This paper describes our approach to minimizing the cyclic error with
emphasis on signal processing issues and the concurrent development of
techniques to detect the error as it is gradually reduced to zero.

Keywords: Displacement metrology, metrology gauges, interferometry,
astrometry, cyclic error, cyclic nonlinearity

1. Introduction

Ultra-precise relative distance measurements are needed to
monitor (and possibly control) the geometry of the telescope
array and starlight transfer optics of the Space Interferometry
Mission (SIM) [1, 2] scheduled for launch in 2009. SIM will
repeatedly measure the relative angular positions of ∼2000
stars to 5 prad accuracy over five years. These data will
allow the detection and characterization of planets orbiting
the stars, will provide accurate stellar distance and velocity
determinations and provide new insights into the character and
distribution of the invisible ‘dark matter’ thought to permeate
the universe.

SIM’s angular precision, δθ , will be limited by the
uncertainty, δL , in knowledge of the optics’ geometry relative
to D = 10 m, the optical baseline. For 5 prad accuracy, δL =
Dδθ = (10 m)(5 × 10−12) = 50 pm. To accommodate other
sources of uncertainty, the error budgeted to the monitoring
of optical displacement is only 10 pm. Meeting this goal has
proven to be a challenge.

The 15 distance measurements used in SIM will define
only the angular geometry of SIM, relaxing the absolute

stability requirement on our distance standard: the λ =
1319 nm wavelength of a YAG laser source. This is because
a change in laser wavelength will appear to the system as a
change in scale, not a change in the angles between optics.

2. The metrology gauge

The laser heterodyne interferometer [3, 4] in figure 1 is
a metrology gauge that measures L , the distance between
two hollow corner cube retro-reflectors. A Michelson
interferometer, it is similar to commercial gauges [5, 6],
to those used in calibrating physical standards [7] and in
dilatometry [8].

Changes in the relative phase � cycles of the heterodyne
signals from the reference (R) and measurement (M)
photodiodes inform us of changes in the optical path difference
(OPD) between the reference and measurement beams. From
this we obtain �L = λ��/2, the change in distance between
the two corner cube fiducials.

The R and M signals are caused by the reference and
measurement beams having optical frequencies that differ by
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Figure 1. Block diagram of laser heterodyne interferometer which measures changes in L , the distance between retro-reflectors CC1 and
CC2. An optional second gauge (shown in grey) can measure the same distance, allowing useful gauge comparisons. The letters A–E
indicate regions where cyclic error originates and are discussed in the text. For cyclic error detection, the PZT actuator moves CC1 with a
voltage ramp that has been precompensated for piezo hysteresis, to achieve near-constant velocity.

20 kHz, and interfere at the photodiodes. The frequency
difference is imparted by acousto-optic modulators (AOMs)
driven by RF signals at 40 and 40.02 MHz. The laser, AOMs
and metrology heads are all interconnected by polarization
maintaining fibre.

The photodiodes and preamps are of a commercial
design [9], modified for use in vacuum. The transimpedance
gain for these experiments was 15 k�, and the peak-to-peak
amplitude of the heterodyne sinusoid at the preamp outputs
varied between channels from 1 to 4 V. The channel-to-channel
variation in signal strengths was due to details of the optics
internal to the metrology heads.

The measurement of � is carried out by converting the
R and M signals from sinusoid to square wave (TTL logic
levels) using zero-crossing detectors preceded by bandpass
filters. � is calculated by a custom phasemeter [10] as the time
delay between the R and M transition, which is later divided
(using software) by the heterodyne period to convert to cycles.
The phasemeter’s digitization resolution is 7.8 ns, giving a
single measurement gauge resolution of 102 pm. However,
the phasemeter measures the phase of every zero crossing
(20 000 per second) and performs on-board averaging. For
these experiments, the phasemeter was read out at 25 Hz, hence
each datum is the average of 800 phase measurements, which
greatly reduces the effects of photodiode and electronic noise,
and enhances the resolution of the phase determination.

The gauges are designed for use in vacuum and were tested
in a vacuum chamber (operated at 1 atm), hence the optical
fibres and signal cables pass through vacuum feedthroughs,
which complicates the task of minimizing crosstalk. Further
details regarding the apparatus can be found in [11].

3. Types of error

Interferometric displacement gauges are susceptible to various
errors. Briefly, these are as follows.

(1) Cyclic error: this is discussed in the next section.
(2) Diffraction error: the gauges under consideration here

are intended for small dynamic range. L will change by
�L < 10 µm, out of L ∼ 10 m. The resulting change
has been calculated to give <1 pm of error, linear in �L .

(3) Mispointing: L will have an error e = Lθ2 if θ , the
mispointing angle between the measurement beam and
the optical axis between retro-reflectors, is non-zero. It is
possible to minimize this error by the use of an automatic
pointing system [12].

(4) Thermal drift: temperature changes (a) in the metrology
head can affect the optics and (b) in the preamps and filters
can change signal phase delays.

(5) Laser drift: changes in λ appear to the system as distance
changes.

(6) Various noise sources: vibrations, photodiode shot noise,
amplifier noise and phasemeter digitization.

Our current emphasis is on estimating error source (1),
the cyclic nonlinearity. By operating the interferometer in a
nominally static configuration, the measurement error from
sources (3)–(6) was determined to be less than 10 pm total
(table 1). We now consider error source (1), the cyclic
nonlinearity.

4. Cyclic error

When the distance measured is varied, interferometric
displacement gauges exhibit a nonlinearity, illustrated in
figure 2, that is periodic in λ/2. This effect has been studied
in depth [13–17] and progress made, resulting in errors of less
than 10 pm rms [18]. However, these gauges do not satisfy
the SIM requirement of measuring the separation between
fiducials mechanically distinct from the metrology head.

Briefly, cyclic error is caused by mixing of the reference
and measurement signals (see figure 1). If a portion,

S305



P G Halverson and R E Spero

Table 1. Summary of results derived from data of figure 9. Units are picometres rms of cyclic error. Data for the higher harmonics are not
shown, but are discussed in the text.

A = with- B = no-
Head Calibration motion motion Difference Difference
number amplitude amplitude amplitude C = A − B C rescaled

First harmonic, 2.07–2.10 Hz

#11 956 16 10 13 13
#16 965 19 10 17 17
Difference 1753 12 5 12 7

Second harmonic, 4.17–4.20 Hz

#11 867 17 8 15 17
#16 866 13 8 11 13
Difference 1270 15 3 14 11

Third harmonic, 6.23–6.27 Hz

#11 818 10 7 8 10
#16 818 10 6 8 10
Difference 534 3 3 ∼0 ∼0
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Figure 2. Cyclic error appears as a sinusoidal deviation from
expected measurement, periodic in λ/2, λ/4 . . . λ/2n, when the
distance between fiducials is increased linearly. Near-linear motion
is introduced using the ramp generator and PZT in figure 1.

of amplitude aR, of the reference signal contaminates the
measurement signal of amplitude AM, the resulting error will
be (see [16], equation (1))

ε1 ≈ 1√
2

λ

2

1

2π

aR

AM
≈ λ

18

aR

AM
(1)

where the constants account for conversion to rms, the
measurement beam’s double-pass through L , and the peak
phase shift the signal of amplitude aR can impart to the
sinusoidal signal of amplitude AM. In addition to this, there
will usually be mixing in the other direction, resulting in an
error

ε2 ≈ λ

18

aM

AR
. (2)

It is difficult to determine the relative phase between ε1

and ε2, so we can set only an upper limit on the combined
effect. For SIM, where ε < 10 pm and λ = 1.3 µm, we must
have the mixing a/A < 10−4, i.e. the signals must be isolated
to better than 80 dB. Because mixing occurs through multiple
mechanisms, we try to limit the leakage from any single source
to < −90 dB.

We now consider sources of cyclic error in the JPL system
by regions A, B, C, . . . as indicated in figure 1.

4.1. Frequency shifters, RF leakage

The gauge’s laser light is split into two paths and frequency
shifted to create two optical frequencies separated by Fhet,
the system heterodyne frequency (=20 kHz, see figure 1).
The frequency shifters are fibre-coupled AOMs that have
peak efficiency at 40 MHz. Thus the RF for the first,
‘local oscillator’ path, is 40.02 MHz, while for the second,
‘measurement’ path it is 40.00 MHz. Mixing of the RF
signals causes cyclic error with a magnitude as predicted by
equation (1).

110 dB isolation was achieved using separate (but
synchronized) signal generators and RF amplifiers. A
noticeable improvement occurred when the coaxial cables
connecting the RF amplifiers to the AOMs were upgraded from
RG-58 to heavily shielded RG-142 and when the AOMs were
isolated from the aluminium breadboard. This may be due to
the elimination of a ground loop where the first RF cable’s
shield acted as a return path for the second RF source’s signal,
and vice versa.

4.2. Metrology head, optical mixing

In the interferometer metrology head [19, 20] the measurement
beam travels the distance between the corner cube fiducials and
is mixed with the local oscillator beam at the measurement
photodiode, which produces a heterodyne beat signal. A
separate portion of the measurement beam goes directly to the
reference photodiode where it mixes with the local oscillator,
producing a reference signal against which the measurement
signal is compared. Any leakage of beams into unintended
paths (e.g. a local oscillator travelling to the fiducials) will
cause cyclic error with amplitude

ε ≈ λ

18

a

A
= λ

18

(
p

P

)1/2

, (3)

where p/P is the ratio of leakage power to ‘good’ beam power.
In typical polarizing metrology systems the isolation

between beams is only ∼30 dB, resulting in ∼2 nm cyclic
errors. The present metrology head maintains a physical
separation of the beams, achieving >70 dB isolation. The
exact performance of these optics is unknown, and its
characterization is the final product of our test facility.
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Figure 3. Signal generators driving infrared LEDs produce
simulated interference light to test the metrology photodiodes and
associated electronics. A spectrum analyser (HP 89410A)
connected to the reference output will observe the expected
20.1 kHz from the first signal generator and a small amount of
20.2 kHz leakage from the second. (Care must be taken to isolate
the signal generators from the rest of the electronics.) Such
explorations also find other sources of contamination such as noise
from nearby computers, clock signals etc.

4.3. Photodiode signal mixing

Electrical isolation was achieved by operating the photodiode
preamps, filter and sine-to-square wave converters on
independent power supplies, and by preventing ground loops.
The reference and measurement channels have shields and
grounds which connect only at the phasemeter inputs.

Improvement was also obtained by reducing the
heterodyne frequency to the present 20 kHz, instead of
100 kHz. This is probably due to a reduction in capacitive
coupling effects which grow linearly with frequency. Further
improvement was made by eliminating termination resistors
at the filter inputs which minimized the current flowing out
of the preamps. A final improvement (not yet implemented)
would be replacement of the single-ended filter inputs with
differential inputs.

The combined effect of these steps was to bring the
signal leakage down to −90 dB (from −70 dB). The cyclic
error measured with the simulated signals, using the analysis
methods described below, was 1 pm.

Identifying signal mixing at these low levels and verifying
>90 dB isolation required the creation of well separated,
heterodyne signals with unique frequencies as shown in
figure 3. Crosstalk between signal paths was monitored using
a HP 89410A spectrum analyser.

4.4. Timing signal mixing

The outputs of the sine-to-square-wave converters are 5 V
TTL logic signals. While these are inherently immune to
crosstalk effects, it was found that the 50 � termination at the
phasemeter inputs caused large current flows that appeared as
contamination in the photodiode preamp outputs, resulting in
cyclic error at twice the usual frequency. This problem was also
seen with other logic signals, such a 20 kHz reference clock.
Eliminating the 50 � terminations (and substituting 50 �

series resistances at the outputs to prevent second reflections),
brought the contamination from this source down to −125 dB.

4.5. Phasemeter time-of-measurement error

The gauge’s phasemeter measures the relative time �T of logic
transitions signalling the zero-crossings of the photodiode
signals (after removal of DC offsets). This approach
creates an ambiguity as to when the phase measurement

Reference
signal

Measurement
signal

∆T Time

Or here?Is Φ measured here?

Figure 4. Heterodyne signals, converted to square waves, have their
relative phases measured by comparing times of falling edges. The
time at which the phase is determined has an ambiguity �T which
causes a significant cyclic error if � is changing rapidly.

are made, as illustrated in figure 4. The time of phase
measurement is important when the phase is changing—as in
these experiments, where the phase is changing linearly at a
rate ν cycles per second. The reference phase changes slowly,
so the effect is in the phase of the measurement signal. The
error is

λ

2
�� = λ

2
ν�T = λ

2

ν

Fhet
fract(�), (4)

where Fract(�) is the fractional part of the phase difference,
ranging from 0 to 1 cycle. This error is cyclic, since Fract(�)

is periodic in �, and is observed as a deviation from the ideal
measurements, similar to figure 2, but with a sawtooth error
signal. The peak-to-peak amplitude is 66 pm, for the ν = 2
cycles per second actuation velocity used in these experiments.

This error is easily removed by subtraction:

�corrected = � − ν

Fhet
Fract(�), (5)

a procedure implemented with software. The effectiveness of
this correction was verified with test signals, and the residual
error is <1 pm.

5. Detecting cyclic error

Cyclic nonlinearity is manifested as a periodic deviation from
the linear ramp expected when constant velocity motion is
applied to one of the endpoint fiducials. This underlies
the method used for detecting and measuring the cyclic
nonlinearity. The JPL test facility includes a piezoelectric
(PZT) actuator to move one of the fiducials.

The system in figure 1 can test two metrology gauges
simultaneously. This is possible because the measurement
beams travel in a ‘racetrack’ path: the upward path is offset
2 cm from the downward path, allowing the propagation of
beams from two gauges without interference. Simultaneous
measurements allows subtraction of common-mode noise
(laser drift, optical table vibrations).

Figure 5 shows typical data from this system (using only
one gauge). The ramp linearly decreases the distance between
fiducials. To find the cyclic error we begin by subtracting a
linear fit to the distance data:

LD(t) = L(t) − (mt + b). (6)

The residuals in LD are dominated by a slow ∼1% deviation
from linearity in the piezo ramp. The cyclic error is the ∼2 Hz
sinusoid, just visible above the noise from air fluctuations and
mechanical vibrations.
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gauge cyclic nonlinearity (small 2 Hz sinusoid). The corner cube
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∼0.15 µm, linear trend is caused by PZT creep.
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Figure 6. rms averages of the amplitudes of 100 Fourier transforms.
Middle, bold, trace: average magnitude of Fourier transforms of
detrended with-motion data similar to figure 5. Note that around the
frequency 2ν/λ = 2.2 Hz a ∼1 nm cyclic nonlinearity ‘peak’ is
evident. Bottom trace: data with no linear motion. Top trace:
detrended, with-motion data, same as middle trace, but with
calibration peaks added by software (see text).

6. Measuring the cyclic error amplitude

The prominent peak in figure 6, middle trace, is at a frequency
equal to the rate of fringe passage in the metrology head,
2.2 Hz: the peak is due to cyclic error and not to spurious effects
such as mechanical vibrations. The rms sum of the amplitude
bins under the peak yields the amplitude of the cyclic error:
ε = 1.2 nm rms.

The with-motion data in figure 6 exhibit a higher noise
level, at all frequencies, than the no-motion data. This is due
to imperfect PZT ramp electronics (DAC noise leaking past
1 Hz low-pass filters) and excitation of resonances at the sweep
start. This excess noise will ultimately limit the cyclic error
detection threshold of the system.
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Figure 7. Setup to introduce a known amount of crosstalk for
exercising the cyclic error measurement technique. Resistance
RX(= 10 k�) causes the reference and measurement signals to mix.
Termination resistances RT are 50 �.

6.1. Insertion of test cyclic error

The cyclic error in figures 5 and 6 had been deliberately
worsened by adding resistance RX between termination
resistors RT, creating a path for crosstalk between the
Reference and Measurement signals in figure 7.

The rms cyclic error added by this resistance can be
predicted:

ε = 1√
2
(�φR + �φM)

(λ/2)

2π
(7)

where �φR and �φM are shifts in phase of the zero-crossing
(we only use the rising part of the sinusoid). These will be

�ϕR = RT

RX

AM

AR
and �ϕM = RT

RX

AR

AM
, (8)

where AR(= 4.3 V) and AM(= 1.0 V) are the peak-to-
peak signal amplitudes out of the reference and measurement
preamps, respectively. Finally, we have

ε = λ

4π
√

2

RT

RX

(
A2

R + A2
M

AR AM

)
= 1.7 nm. (9)

6.2. Calibration

A calibration signal is added by software to �, the phase data
(in cycles) from the experiment:

�′ = � +

√
2εcal

λ/2

∑
n=1,...,5

sin(2nπfract(�)). (10)

The effect of this added signal is shown in the top
trace of figure 6, with εcal = 100 nm. The peaks indicate
where errors periodic in � are expected for n = 1 . . . 5.
The calibration signal created by equation (10) has the same
frequency distribution as the ‘real’ cyclic error, because they
both have constant phase relative to �. Consequently, any
spread in the ‘real’ peaks or drift in the peaks’ frequency due
to PZT hysteresis is also observed in the calibration peaks,
guiding the analysis.

The search for peaks at high n is motivated by the
observation that cyclic error sometimes manifests higher
‘harmonics’. An effect at n = 2 is usually due to simultaneous
leakage of local oscillator (figure 1) light into measurement
light and vice versa. (It is also created by crosstalk between
reference and measurement signal after conversion to square
waves.) Leakage that makes n trips around the ‘racetrack’
appears as cyclic error at the nth peak. The current metrology
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head design does not allow multiple round trips of any beams,
hence n > 2 cyclic errors of optical origin are not expected.

Comparison of the ‘real’ n = 1 peak (due to RX) with
the first calibration peak in figure 6 reveals that the calibration
peak is a good predictor of the frequency distribution of the
cyclic error, as seen in figure 8.

Computation of the cyclic error may be accomplished in
two ways. The first is the calculation of the rms sum under
the peak: e.g. including just the five points between the bars
in figure 8. This yields 99.5 nm for the 100 nm software-
generated calibration. Computing the equivalent sum for the
‘real’ peak gives 1.2 nm, a measure of the cyclic error for the
gauge. For better accuracy, we can subtract (in quadrature) the
rms sum for the no-motion data, 0.2 nm, again giving 1.2 nm.
(For measurements with smaller cyclic errors, subtracting the
no-motion data will have a significant effect.)

A second method to compute the cyclic error, less affected
by the broad-band noise introduced by the linear ramp, is to
compute

ε = (A2
cyclic − A2

no motion)
1/2 εcal

Acal
, (11)

where εcal is the calibration cyclic amplitude, Acal is the peak
calibration amplitude point (or pair of points), Acyclic is the
same frequency ‘real data’ amplitude and Ano motion is the
corresponding ‘no-motion’ background amplitude. For the
test data above, this gives ε = (1.22 − 0.012)1/2(100/95.4) =
1.2 nm. This method will be applied to the following results.

7. Results

Six metrology heads fabricated by our industry partner,
Lockheed–Martin, were tested and data for two typical units
are presented here. Figure 9 shows data for the two units, that
were acquired simultaneously, which will allow later removal
of common-mode disturbances.

Each panel in figure 9 shows the rms average of Fourier
amplitudes of data processed according to equation (6). The
middle, bold traces have the 1.5 µm s−1 linear ramp which
reveals cyclic error. The top traces are the same, but with the
calibration cyclic error added. The bottom traces show data
without the linear ramp, revealing the noise floor of the system,
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Figure 9. rms average of 100 amplitude spectra for gauges with
metrology heads #11 (A) and #16 (B). Plot (C) is an average of
amplitude spectra of the difference in simultaneous readings
between the two gauges. For each plot, the bold trace shows
detrended ∼1.5 µm s−1 linear ramp data, the top trace shows the
same data with 1 nm calibration ‘cyclic error’ added and the bottom
trace shows no-motion background data.

including peaks from external sources of vibration (e.g. air
handlers, pumps).

In table 1, the frequencies of the two highest amplitude
points of each calibration peak were selected (as in figure 8)
and are shown. The average amplitudes of all traces at the same
frequencies are also shown. The last two columns show the
cyclic error obtained by applying equation (11) to the results.

The last column of table 1 gives the cyclic error for
each harmonic separately. Combining the first and second
harmonics in quadrature yields a total rms cyclic error of 22
for metrology head number 11 and 21 pm for head number
16. These are upper limits to the error because some of the
amplitude excess is caused by the overall increase in noise
when the linear ramp is active. Since this noise is mechanical
it is common to both gauges and is mostly eliminated in the
difference of gauges, see figure 9(C).

In the difference of two gauges data, the combined first
and second harmonics’ cyclic error is 13 pm, and is the rms
sum of the two gauges’ error, which would be consistent with
each gauge having 10 pm error. Unfortunately, we cannot
determine with confidence how that error is allocated between
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Table 2. Summary of cyclic error results. See text for discussion of
assumptions involved in reaching 10 pm mean error conclusion.

Cyclic error upper limit: < 22 pm rms for each gauge

Mean cyclic error: 10 pm rms. One gauge may
be higher, the other lower.

the two gauges, but the data support the claim that 22 pm and
21 pm errors are indeed upper limits.

For the third, fourth and fifth harmonics, the individual
gauge results are dominated by the noise introduced by the
ramp. For these frequencies the difference of gauges data is
consistent with zero cyclic error. Since for this metrology head
design we know of no mechanisms by which n > 2 cyclic error
harmonics can be generated, we are confident that the errors
are limited to the first two harmonics. These conclusions are
summarized in table 2.

Analysis of the difference of gauges data must take the
relative phases of the cyclic errors into account. It is entirely
possible for the cyclic errors to disappear if the errors in the
two gauges are of equal magnitude and phase. Fortunately, the
two metrology heads have slightly different thickness optics
so their signals are �� = 133◦ apart, hence the cyclic errors
will be magnified by 2 sin(n��/2) = 1.83 for n = 1, 1.47 for
n = 2, 0.647 for n = 3, etc, resulting in the varied calibration
peak amplitudes of figure 9(C). The validity of the claim of
10 pm mean error for two gauges depends on the ‘real’ cyclic
error having the same underlying causes for each gauge, so
that the phase of the cyclic error relative to the signal phase is
the same for both gauges.

8. Conclusions

Implementation of displacement metrology gauges based on
heterodyne interferometers, with linearity better than 100 pm,
places stringent requirements both on the optics of the
metrology heads, and on the supporting electronics and phase
measuring apparatus. We have identified and corrected sources
of cyclic nonlinearity in both domains resulting in a two
order-of-magnitude improvement over commercial metrology
gauges. The 10 pm rms linearity goal of the SIM appears to
be within reach.
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