
Converting Telescope Coordinate Systems.  
Halverson 12/6/2018

How to convert from the Alt-Az (Altitude-Azimuth) coordinates our telescope uses to Equatorial coordinates 
needed to locate and track objects in the sky.

General Strategy
I am calling the scope’s Alt-Az system the “A” system. and the Equatorial coordinates the “E” system.
General strategy to convert from A to E:  (scope coordinates to sky coordinates)
1. Convert the pointing angles of the scope to x,y,z coordinates of a point a distance away, in the direction the 

scope is pointing.  The distance R doesn’t actually matter.  It could be 10 meters away, or 1000 light years 
away.    

In short, (θ,φ,R)A → (x,y,z)A 
2. Convert the (x,y,z)A coordinates to (x,y,z)E coordinates, in the rotated coordinate system where the z axis 

points to the north celestial pole.  (The z axis points to Polaris, the “North Star”.)    
 In short, (x,y,z)A → (x,y,z)E 
3. Convert the equatorial x,y,z coordinates to equatorial angles.
 In short, (x,y,z)E → (θ,φ,R)E 
Again, R is just a placeholder  kept to make the math easier to understand.  In the computer code we will 
probably set R to 1, or eliminate it completely.
We will also need to convert E coordinates to A.  With a few minor differences, the same process will apply.

HELP!!!    
I NEED A STUDENT TO WORK THE MATH FOR E TO A COORDINATES CONVERSION.

Update 1/22/2019:  I have done the math for E to A conversion and written the Python code for the 
conversions math to be built in to the telescope control software.  I have added the math and the Python 
code to this document.  I also corrected a couple mistakes.  Scroll down and take a look.
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Coordinate systems
“A” = ALT-AZ COORDINATE SYSTEM:

“E” = EQUATORIAL COORDINATE SYSTEM
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Converting from A to E - details
Step 1: (θ,φ,R)A → (x,y,z)A

xA = Rcos(θA )cos(ϕA )
yA = Rcos(θA )sin(ϕA )
zA = Rsin(θA )

Step 2: (x,y,z)A → (x,y,z)E 
This part is complicated and I will break it into smaller sub-steps.

Sub-step 2.1:  yA → yE

This is easy!  The y coordinates are the same in the two systems.
yE = yA

Sub-step 2.2:  (x,z)A → (eA,r)
We now look at the coordinate systems a bit differently.  We pretend we are West of the telescope and look at it 
sitting in the East:

This is a good way to look at it because from this vantage point the transition from “A” (Alt-Az) to 
“E” (Equatorial) coordinates looks like a simple rotation. 
 In the diagram, we have defined a new angle called eA related to the altitude θA  but different depending 
on  the current azimuth angle φA of the telescope.  To calculate eA first notice that

zA = r sin(eA ) and xA = r cos(eA ) .

Now put these two thing together like this:
zA
xA

= r sin(eA )
r cos(eA )

= tan(eA )

We now have an easy way to find  eA:

eA = arctan
zA
xA

⎛
⎝⎜

⎞
⎠⎟

We also define a new radial distance r related to the original R, but foreshortened because of our point-of-view 
standing West of the telescope, looking East. We find it using the pythagorean theorem:

 r = xA
2 + zA

2

3



 (Another way to find r is r = Rcos(ϕA ) however if  φA. is greater than 90 degrees, the cosine will be negative, 

so we actually would need to use the absolute value r = R cos(ϕA ) )

Sub-step 2.3:  eA → eE

The E system is rotated relative to the A system by an amount that depends on our latitude L.  Here, in Los 
Angeles, L=34.05 degrees which means we are that many degrees North of the equator, and that Polaris, the 
North Star, is that many degrees above the horizon, to the North.
The E system’s x and z axes are rotated L degrees counter-clockwise from the A system’s x and z axis.  In the 
diagram below, you see how it is similar to the previous digram, but rotated ccw.  (The y axis is pointed away 
from us, so we don’t se it.)

(I corrected a mistake in this diagram and in the following step.  The angles didn’t add up right.)
For the conversion eA → eE first note that the angle from the x axis to the z axis is 90 degrees so

900 = eE − eA + L

Solve for eE:

eE = 90
0 + eA − L

No conversion is needed for r, since the distance from the origin is unaffected by a rotation.

Sub-step 2.4:  (r,eE )→ (x,z)E

We now want to get x and z in the E system.  (We already know y; it didn’t change.)  It isn’t too hard:
xE = r cos(eE )
zE = r sin(eE )

(I corrected a mistake here.  I had the cos and sin reversed.)
We are now done with step 2.  We know (x,y,z)E.     
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Step 3: (x,y,z)E  → (θ,φ,R)E 
Since R doesn’t change in a rotation, we already know this part of the answer.  It is the same R we started with. 
(And it doesn’t really matter what R is.)
We also know this:

xE = Rcos(θE )cos(ϕE )
yE = Rcos(θE )sin(ϕE )
zE = Rsin(θE )

If we can work these equations backward, then we’re done.
First let’s do φE:

yE
xE

= Rcos(θE )sin(ϕE )
Rcos(θE )cos(ϕE )

= sin(ϕE )
cos(ϕE )

= tan(ϕE )

therefore

                                          ϕE = arctan
yE
xE

⎛
⎝⎜

⎞
⎠⎟   <---THE ANSWER, part 1

To get θE we have:

zE = Rsin(θE )

sin(θE ) =
zE
R

θE = arcsin
zE
R

⎛
⎝⎜

⎞
⎠⎟

(If we happen to make R=1, then θE=arcsin(zE), but I haven’t decided this yet.)
In a computer the formula 

θE = arcsin
zE
R

⎛
⎝⎜

⎞
⎠⎟

gives low accuracy answers near 90 degrees (why is that?) but there is a better way that is always accurate.  To 
understand it, think of the distance from the z axis that the (x,y,z) point is.  Call this distance “rxy” because it is 
the “projection of R on to the xy plane.”  Here is a digram with rxy in bold (from Wikipedia, with 
modifications1):
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rxy
2 = xE

2 + yE
2

rxy = xE
2 + yE

2

Now we have the better way to get θE :

tan(θE ) =
zE
rxy

= zE
xE
2 + yE

2

so

                                             θE = arctan
zE

xE
2 + yE

2

⎛

⎝
⎜

⎞

⎠
⎟    <---THE ANSWER, part 2

(This accuracy problem is very common in computer simulations, game design and target tracking so most 
computer languages, including python, have a special arctan function, called “ATAN2” for just this purpose.)

Conclusion:
We now have the math needed to convert the telescope’s Alt-Az pointing information (which comes from the 
stepping motor control) to the sky’s natural Equatorial coordinates. 

Footnotes:
1)  I have changed the xyz system from “right handed’ to “left-handed” to agree with this explanation.  It came 
from https://en.wikipedia.org/wiki/Spherical_coordinate_system
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Reverse Conversion: Equatorial to Alt-Az:  (Steps flagged in red became Python code)
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Python Code:
from collections import namedtuple   #This is a add-on feature to allow multi-part 
                                     #variables such as  (x,y,z) and (theta,phi)

from math import *                   #Import all of the math library, ie sin, cos, tan...

L=radians(34.0636051)    #This is the latitude of Stern MASS from Google Maps that I 
added to Stellarium
#L=radians(34.0095291)    #This is the latitude of Alhambra used in Stellarium

def A_to_E(thetaA,phiA):  #thetaA is the Altitude angle, phiA is the Azimuth angle, in 
degrees.
  # thetaA is zero at the horizon, increasing to 90 degrees at the zenith (straight 
overhead)
  # phiA is zero due north increases to 90 degrees due East, 180 for South, 270 for West.
  print
  print "thetaA=",thetaA," phiA=",phiA
  R=1000.0
  #Convert the angles to radians
  thetaA=radians(thetaA)
  phiA=radians(phiA)
  #--------------------------STEP 1     theta, phi, R --> x,y,z
  xA=R*cos(thetaA)*cos(phiA)
  yA=R*cos(thetaA)*sin(phiA)
  zA=R*sin(thetaA)
  print "xA=",xA," yA=",yA," zA=",zA
  #--------------------------STEP 2    (x,y,z)A --> (x,y,z)E
  #--------------------------substep 2.1  yA --> yE
  yE=yA
  #--------------------------substep 2.2  (x,z)A --> (eA,r)
  eA=atan2(zA,xA)
  r=sqrt(xA*xA+zA*zA)
  print "r=",r
  #--------------------------substep 2.3  eA --> eE
  eE=radians(90.0)+eA-L
  print "eA=",degrees(eA)," eE=",degrees(eE)
  #--------------------------substep 2.4  eE --> (x,z)E
  xE=r*cos(eE)
  zE=r*sin(eE)
  print "xE=",xE," yE=",yE," zE=",zE
  #--------------------------STEP 3     (x,y,z)E --> (theta, phi,R)E
  phiE=atan2(yE,xE)
  thetaE=atan2(zE,sqrt(xE*xE+yE*yE))
  #---------------------------We are done
  #convert the angles from radians back to degrees
  thetaE=degrees(thetaE)
  phiE=degrees(phiE)
  if phiE < 0.0:
    phiE += 360.0    #We don't want negative phi values.
  reverse_phiE=360.0-phiE
  #if reverse_phiE > 360.0:
  #  reverse_phiE -= 360.0
  print "thetaE=",thetaE," phiE=",phiE,"   360-phiE=",reverse_phiE
  angles = namedtuple('angles','theta phi')
  return angles(theta=thetaE,phi=phiE)

def E_to_A(thetaE,phiE):  
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  # thetaE is the Declination angle.  It is zero at the celestial equator, increasing to 
90 at the celestial North Pole.
  # phiE is the angle around the equatorial plane
  # phiE is zero at the point below the horizon under the north celestial pole.  It 
increase
  # to 90 degree at due East, to 180 overhead/south and 270, due west.
  print
  print "thetaE=",thetaE," phiA=",phiE
  R=1000.0
  #Convert the angles to radians
  thetaE=radians(thetaE)
  phiE=radians(phiE)
  #--------------------------STEP 1     theta, phi, R --> x,y,z
  xE=R*cos(thetaE)*cos(phiE)
  yE=R*cos(thetaE)*sin(phiE)
  zE=R*sin(thetaE)
  print "xE=",xE," yE=",yE," zA=",zE
  #--------------------------STEP 2    (x,y,z)E --> (x,y,z)A
  #--------------------------substep 2.1  yE --> yA
  yA=yE
  #--------------------------substep 2.2  (x,z)E --> (eE,r)
  eE=atan2(zE,xE)
  r=sqrt(xE*xE+zE*zE)
  print "r=",r
  #--------------------------substep 2.3  eE --> eA
  eA=eE+L-radians(90.0)
  print "eE=",degrees(eE)," eA=",degrees(eA)
  #--------------------------substep 2.4  r,eA --> (x,z)A
  xA=r*cos(eA)
  zA=r*sin(eA)
  print "xA=",xA," yA=",yA," zA=",zA
  #--------------------------STEP 3     (x,y,z)A --> (theta, phi,R)A
  phiA=atan2(yA,xA)
  thetaA=atan2(zA,sqrt(xA*xA+yA*yA))
  #---------------------------We are done
  #convert the angles from radians back to degrees
  thetaA=degrees(thetaA)
  phiA=degrees(phiA)
  if phiA < 0.:
    phiA += 360.0     #We don't want negative phi values.
  #reverse_phiA=360.0-phiA
  #if reverse_phiA > 360.0:
  #  reverse_phiA -= 360.0
  print "thetaA=",thetaA," phiA=",phiA
  #,"   360-phiE=",reverse_phiE
  angles = namedtuple('angles','theta phi')
  return angles(theta=thetaA,phi=phiA)

# Test the conversion function
#newthetaE,newphiE=A_to_E(10.,20.)    
#print "newthetaE=",newthetaE," newphiE=",newphiE

# Test the reverse conversion
#newthetaA,newphiA=E_to_A(newthetaE,newphiE)
#print "newthetaA=",newthetaA," newphiA=",newphiA
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