
Converting Telescope Coordinate Systems.
Halverson 12/6/2018

How to convert from the Alt-Az (Altitude-Azimuth) coordinates our telescope uses to Equatorial coordinates
needed to locate and track objects in the sky.

General Strategy
I am calling the scope’s Alt-Az system the “A” system. and the Equatorial coordinates the “E” system.
General strategy to convert from A to E: (scope coordinates to sky coordinates)
1. Convert the pointing angles of the scope to x,y,z coordinates of a point a distance away, in the direction the

scope is pointing. The distance R doesn’t actually matter. It could be 10 meters away, or 1000 light years
away.

In short, (θ,φ,R)A → (x,y,z)A
2. Convert the (x,y,z)A coordinates to (x,y,z)E coordinates, in the rotated coordinate system where the z axis

points to the north celestial pole. (The z axis points to Polaris, the “North Star”.)
 In short, (x,y,z)A → (x,y,z)E
3. Convert the equatorial x,y,z coordinates to equatorial angles.
 In short, (x,y,z)E → (θ,φ,R)E
Again, R is just a placeholder kept to make the math easier to understand. In the computer code we will
probably set R to 1, or eliminate it completely.
We will also need to convert E coordinates to A. With a few minor differences, the same process will apply.

HELP!!!
I NEED A STUDENT TO WORK THE MATH FOR E TO A COORDINATES CONVERSION.

Update 1/22/2019: I have done the math for E to A conversion and written the Python code for the
conversions math to be built in to the telescope control software. I have added the math and the Python
code to this document. I also corrected a couple mistakes. Scroll down and take a look.

1

Coordinate systems
“A” = ALT-AZ COORDINATE SYSTEM:

“E” = EQUATORIAL COORDINATE SYSTEM

2

Converting from A to E - details
Step 1: (θ,φ,R)A → (x,y,z)A

xA = Rcos(θA)cos(ϕA)
yA = Rcos(θA)sin(ϕA)
zA = Rsin(θA)

Step 2: (x,y,z)A → (x,y,z)E
This part is complicated and I will break it into smaller sub-steps.

Sub-step 2.1: yA → yE

This is easy! The y coordinates are the same in the two systems.
yE = yA

Sub-step 2.2: (x,z)A → (eA,r)
We now look at the coordinate systems a bit differently. We pretend we are West of the telescope and look at it
sitting in the East:

This is a good way to look at it because from this vantage point the transition from “A” (Alt-Az) to
“E” (Equatorial) coordinates looks like a simple rotation.
 In the diagram, we have defined a new angle called eA related to the altitude θA but different depending
on the current azimuth angle φA of the telescope. To calculate eA first notice that

zA = r sin(eA) and xA = r cos(eA) .

Now put these two thing together like this:
zA
xA

= r sin(eA)
r cos(eA)

= tan(eA)

We now have an easy way to find eA:

eA = arctan
zA
xA

⎛
⎝⎜

⎞
⎠⎟

We also define a new radial distance r related to the original R, but foreshortened because of our point-of-view
standing West of the telescope, looking East. We find it using the pythagorean theorem:

 r = xA
2 + zA

2

3

 (Another way to find r is r = Rcos(ϕA) however if φA. is greater than 90 degrees, the cosine will be negative,

so we actually would need to use the absolute value r = R cos(ϕA))

Sub-step 2.3: eA → eE

The E system is rotated relative to the A system by an amount that depends on our latitude L. Here, in Los
Angeles, L=34.05 degrees which means we are that many degrees North of the equator, and that Polaris, the
North Star, is that many degrees above the horizon, to the North.
The E system’s x and z axes are rotated L degrees counter-clockwise from the A system’s x and z axis. In the
diagram below, you see how it is similar to the previous digram, but rotated ccw. (The y axis is pointed away
from us, so we don’t se it.)

(I corrected a mistake in this diagram and in the following step. The angles didn’t add up right.)
For the conversion eA → eE first note that the angle from the x axis to the z axis is 90 degrees so

900 = eE − eA + L

Solve for eE:

eE = 90
0 + eA − L

No conversion is needed for r, since the distance from the origin is unaffected by a rotation.

Sub-step 2.4: (r,eE)→ (x,z)E

We now want to get x and z in the E system. (We already know y; it didn’t change.) It isn’t too hard:
xE = r cos(eE)
zE = r sin(eE)

(I corrected a mistake here. I had the cos and sin reversed.)
We are now done with step 2. We know (x,y,z)E.

4

Step 3: (x,y,z)E → (θ,φ,R)E
Since R doesn’t change in a rotation, we already know this part of the answer. It is the same R we started with.
(And it doesn’t really matter what R is.)
We also know this:

xE = Rcos(θE)cos(ϕE)
yE = Rcos(θE)sin(ϕE)
zE = Rsin(θE)

If we can work these equations backward, then we’re done.
First let’s do φE:

yE
xE

= Rcos(θE)sin(ϕE)
Rcos(θE)cos(ϕE)

= sin(ϕE)
cos(ϕE)

= tan(ϕE)

therefore

 ϕE = arctan
yE
xE

⎛
⎝⎜

⎞
⎠⎟ <---THE ANSWER, part 1

To get θE we have:

zE = Rsin(θE)

sin(θE) =
zE
R

θE = arcsin
zE
R

⎛
⎝⎜

⎞
⎠⎟

(If we happen to make R=1, then θE=arcsin(zE), but I haven’t decided this yet.)
In a computer the formula

θE = arcsin
zE
R

⎛
⎝⎜

⎞
⎠⎟

gives low accuracy answers near 90 degrees (why is that?) but there is a better way that is always accurate. To
understand it, think of the distance from the z axis that the (x,y,z) point is. Call this distance “rxy” because it is
the “projection of R on to the xy plane.” Here is a digram with rxy in bold (from Wikipedia, with
modifications1):

5

rxy
2 = xE

2 + yE
2

rxy = xE
2 + yE

2

Now we have the better way to get θE :

tan(θE) =
zE
rxy

= zE
xE
2 + yE

2

so

 θE = arctan
zE

xE
2 + yE

2

⎛

⎝
⎜

⎞

⎠
⎟ <---THE ANSWER, part 2

(This accuracy problem is very common in computer simulations, game design and target tracking so most
computer languages, including python, have a special arctan function, called “ATAN2” for just this purpose.)

Conclusion:
We now have the math needed to convert the telescope’s Alt-Az pointing information (which comes from the
stepping motor control) to the sky’s natural Equatorial coordinates.

Footnotes:
1) I have changed the xyz system from “right handed’ to “left-handed” to agree with this explanation. It came
from https://en.wikipedia.org/wiki/Spherical_coordinate_system

6

Reverse Conversion: Equatorial to Alt-Az: (Steps flagged in red became Python code)

7

8

Python Code:
from collections import namedtuple #This is a add-on feature to allow multi-part
 #variables such as (x,y,z) and (theta,phi)

from math import * #Import all of the math library, ie sin, cos, tan...

L=radians(34.0636051) #This is the latitude of Stern MASS from Google Maps that I
added to Stellarium
#L=radians(34.0095291) #This is the latitude of Alhambra used in Stellarium

def A_to_E(thetaA,phiA): #thetaA is the Altitude angle, phiA is the Azimuth angle, in
degrees.
 # thetaA is zero at the horizon, increasing to 90 degrees at the zenith (straight
overhead)
 # phiA is zero due north increases to 90 degrees due East, 180 for South, 270 for West.
 print
 print "thetaA=",thetaA," phiA=",phiA
 R=1000.0
 #Convert the angles to radians
 thetaA=radians(thetaA)
 phiA=radians(phiA)
 #--------------------------STEP 1 theta, phi, R --> x,y,z
 xA=R*cos(thetaA)*cos(phiA)
 yA=R*cos(thetaA)*sin(phiA)
 zA=R*sin(thetaA)
 print "xA=",xA," yA=",yA," zA=",zA
 #--------------------------STEP 2 (x,y,z)A --> (x,y,z)E
 #--------------------------substep 2.1 yA --> yE
 yE=yA
 #--------------------------substep 2.2 (x,z)A --> (eA,r)
 eA=atan2(zA,xA)
 r=sqrt(xA*xA+zA*zA)
 print "r=",r
 #--------------------------substep 2.3 eA --> eE
 eE=radians(90.0)+eA-L
 print "eA=",degrees(eA)," eE=",degrees(eE)
 #--------------------------substep 2.4 eE --> (x,z)E
 xE=r*cos(eE)
 zE=r*sin(eE)
 print "xE=",xE," yE=",yE," zE=",zE
 #--------------------------STEP 3 (x,y,z)E --> (theta, phi,R)E
 phiE=atan2(yE,xE)
 thetaE=atan2(zE,sqrt(xE*xE+yE*yE))
 #---------------------------We are done
 #convert the angles from radians back to degrees
 thetaE=degrees(thetaE)
 phiE=degrees(phiE)
 if phiE < 0.0:
 phiE += 360.0 #We don't want negative phi values.
 reverse_phiE=360.0-phiE
 #if reverse_phiE > 360.0:
 # reverse_phiE -= 360.0
 print "thetaE=",thetaE," phiE=",phiE," 360-phiE=",reverse_phiE
 angles = namedtuple('angles','theta phi')
 return angles(theta=thetaE,phi=phiE)

def E_to_A(thetaE,phiE):

9

 # thetaE is the Declination angle. It is zero at the celestial equator, increasing to
90 at the celestial North Pole.
 # phiE is the angle around the equatorial plane
 # phiE is zero at the point below the horizon under the north celestial pole. It
increase
 # to 90 degree at due East, to 180 overhead/south and 270, due west.
 print
 print "thetaE=",thetaE," phiA=",phiE
 R=1000.0
 #Convert the angles to radians
 thetaE=radians(thetaE)
 phiE=radians(phiE)
 #--------------------------STEP 1 theta, phi, R --> x,y,z
 xE=R*cos(thetaE)*cos(phiE)
 yE=R*cos(thetaE)*sin(phiE)
 zE=R*sin(thetaE)
 print "xE=",xE," yE=",yE," zA=",zE
 #--------------------------STEP 2 (x,y,z)E --> (x,y,z)A
 #--------------------------substep 2.1 yE --> yA
 yA=yE
 #--------------------------substep 2.2 (x,z)E --> (eE,r)
 eE=atan2(zE,xE)
 r=sqrt(xE*xE+zE*zE)
 print "r=",r
 #--------------------------substep 2.3 eE --> eA
 eA=eE+L-radians(90.0)
 print "eE=",degrees(eE)," eA=",degrees(eA)
 #--------------------------substep 2.4 r,eA --> (x,z)A
 xA=r*cos(eA)
 zA=r*sin(eA)
 print "xA=",xA," yA=",yA," zA=",zA
 #--------------------------STEP 3 (x,y,z)A --> (theta, phi,R)A
 phiA=atan2(yA,xA)
 thetaA=atan2(zA,sqrt(xA*xA+yA*yA))
 #---------------------------We are done
 #convert the angles from radians back to degrees
 thetaA=degrees(thetaA)
 phiA=degrees(phiA)
 if phiA < 0.:
 phiA += 360.0 #We don't want negative phi values.
 #reverse_phiA=360.0-phiA
 #if reverse_phiA > 360.0:
 # reverse_phiA -= 360.0
 print "thetaA=",thetaA," phiA=",phiA
 #," 360-phiE=",reverse_phiE
 angles = namedtuple('angles','theta phi')
 return angles(theta=thetaA,phi=phiA)

Test the conversion function
#newthetaE,newphiE=A_to_E(10.,20.)
#print "newthetaE=",newthetaE," newphiE=",newphiE

Test the reverse conversion
#newthetaA,newphiA=E_to_A(newthetaE,newphiE)
#print "newthetaA=",newthetaA," newphiA=",newphiA

10

